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LECTURE  17
TOPICS TO BE COVERED:

 Decision tree 



CLASSIFICATION BY DECISION TREE 
INDUCTION

 Decision tree 
 A flow-chart-like tree structure
 Internal node denotes a test on an attribute
 Branch represents an outcome of the test
 Leaf nodes represent class labels or class distribution

 Decision tree generation consists of two phases
 Tree construction

 At start, all the training examples are at the root
 Partition examples recursively based on selected attributes

 Tree pruning
 Identify and remove branches that reflect noise or outliers

 Use of decision tree: Classifying an unknown sample
 Test the attribute values of the sample against the decision tree



TRAINING DATASET

age income student credit_rating
<=30 high no fair
<=30 high no excellent
31…40 high no fair
>40 medium no fair
>40 low yes fair
>40 low yes excellent
31…40 low yes excellent
<=30 medium no fair
<=30 low yes fair
>40 medium yes fair
<=30 medium yes excellent
31…40 medium no excellent
31…40 high yes fair
>40 medium no excellent

This 
follows 
an  
example 
from 
Quinlan’s 
ID3



OUTPUT: A DECISION TREE FOR 
“BUYS_COMPUTER”

age?

overcast

student? credit rating?

no yes fairexcellent

<=30 >40

no noyes yes

yes

30..40



DECISION TREE INDUCTION
During the late 1970s and early 1980s, J. Ross Quinlan, a 

researcher in machine learning, developed a decision tree 
algorithm known as ID3 (Iterative Dichotomiser). 

This work expanded on earlier work on concept learning 
systems, described by E. B. Hunt, J. Marin, and P. T. Stone. 
Quinlan later presented C4.5 (a successor of ID3), which 
became a benchmark to which newer supervised learning 
algorithms are often compared.

In 1984, a group of statisticians (L. Breiman, J. Friedman, R. 
Olshen, and C. Stone) published the book Classification 
and Regression Trees (CART), which described the 
generation of binary decision trees.

These two cornerstone algorithms spawned a flurry of work 
on decision tree induction.



DECISION TREE INDUCTION

Algorithms for decision tree induction also follow such a top-down 
approach, which starts with a training set of tuples and their 
associated class labels. The training set is recursively partitioned 
into smaller subsets as the tree is being built.



ALGORITHM FOR DECISION TREE INDUCTION

 Basic algorithm (a greedy algorithm)
 Tree is constructed in a top-down recursive divide-and-conquer 

manner
 At start, all the training examples are at the root
 Attributes are categorical (if continuous-valued, they are 

discretized in advance)
 Examples are partitioned recursively based on selected attributes
 Test attributes are selected on the basis of a heuristic or statistical 

measure (e.g., information gain)
 Conditions for stopping partitioning

 All samples for a given node belong to the same class
 There are no remaining attributes for further partitioning – majority 

voting is employed for classifying the leaf
 There are no samples left



ATTRIBUTE SELECTION MEASURE

 Three popular attribute selection measures—information  gain, gain 
ratio, and gini index. 

 The notation used herein is as follows.
Let D, the data partition, be a training set of class-labeled tuples. 
Suppose the class label attribute has m distinct values defining m 
distinct classes, Ci (for i = 1, …, m).
Let Ci,D be the set of tuples of class Ci in D. Let |D| and |Ci,D| denote the 
number of tuples in D and Ci,D, respectively.



INFORMATION GAIN

 ID3 uses information gain as its attribute selection measure.
 Let node N represent or hold the tuples of partition D. The attribute with 

the highest information gain is chosen as the splitting attribute for node 
N. This attribute minimizes the information needed to classify the tuples 
in the resulting partitions and reflects the least randomness or “impurity” 
in these partitions. Such an approach minimizes the expected number of 
tests needed to classify a given tuple and guarantees that a simple (but 
not necessarily the simplest) tree is found. The expected information 
needed to classify a tuple in D is given by



INFORMATION GAIN

 where pi is the probability that an arbitrary tuple in D belongs to class Ci 
and is estimated  by |Ci ,D \ / |D|.

 A log function to the base 2 is used, because the information is encoded 
in bits. 

 Info(D) is just the average amount of information needed to identify the 
class label of a tuple in D.

 Note that, at this point, the information we have is based solely on the 
proportions of tuples of each class. Info(D) is also known as the entropy 
of D.



INFORMATION GAIN

 Now, suppose we were to partition the tuples in D on some attribute A 
having v distinct values, {a1 ,a2,…, av}, as observed from the training 
data. 

 If A is discrete-valued, these values correspond directly to the v 
outcomes of a test on A. Attribute A can be used to split D into v 
partitions or subsets, {D1, D2 ,… , Dv }, where Dj contains those tuples in 
D that have outcome aj of A. 

 These partitions would correspond to the branches grown from node N. 
Ideally, we would like this partitioning to produce an exact classification 
of the tuples. That is, we would like for each partition to be pure. 
However, it is quite likely that the partitions will be impure (e.g., where a 
partition may contain a collection of tuples from different classes rather 
than from a single class). How much more information would we still 
need (after the partitioning) in order to arrive at an exact classification? 



INFORMATION GAIN

 This amount is measured by

 The term |Dj \|\D\ acts as the weight of the jth partition. 
 InfoA(D) is the expected information required to classify a tuple from D 

based on the partitioning by A. 
 The smaller the expected information (still) required, the greater the 

purity of the partitions.



INFORMATION GAIN

 Information gain is defined as the difference between the original 
information requirement (i.e., based on just the proportion of classes) 
and the new requirement (i.e., obtained after partitioning on A). That is,



INFORMATION GAIN

 In other words, Gain(A) tells us how much would be gained by branching 
on A. It is the expected reduction in the information requirement caused 
by knowing the value of A.

 The attribute A with the highest information gain, (Gain(A)), is chosen as 
the splitting  attribute at node N. This is equivalent to saying that we 
want to partition on the attribute A that would do the “best classification,” 
so that the amount of information still required to finish classifying the 
tuples is minimal (i.e., minimum InfoA(D)).



EXAMPLE



EXAMPLE



GAIN RATIO

 The gain ratio is defined as

 Where SplittingInfo(A) is  describe as
 It applies a kind of normalization to information gain using a “split 

information” value defined analogously with Info(D) as

 This value represents the potential information generated by 
splitting the training data set, D, into v partitions, corresponding to 
the v outcomes of a test on attribute A.



EXAMPLE

 Computation of gain ratio for the attribute income. A test on income splits 
the data of  previous example into three partitions, namely low, medium, 
and high, containing four, six, and

 four tuples, respectively.

we have Gain(income) = 0.029. Therefore, 
GainRatio(income) = 0.029/0.926 = 0.031.



GINI INDEX

 the Gini index measures the impurity of D, a data partition or set of 
training tuples, as

 where pi is the probability that a tuple in D belongs to class Ci and is 
estimated by \Ci,D \ / \D\. The sum is computed over m classes.

 The Gini index considers a binary split for each attribute. Let’s first 
consider the case where A is a discrete-valued attribute having v distinct 
values, {a1, a2 ,… , av}, occurring in D



 if a binary split on A partitions D into D1 and D2, the gini index of D given 
that partitioning is

 The reduction in impurity that would be incurred by a binary split on a 
discrete- or continuous-valued attribute A is

 The attribute that maximizes the reduction in impurity (or, equivalently, 
has the minimum Gini index) is selected as the splitting attribute.



EXAMPLE

 Induction of a decision tree using gini index. Let D be the training data of  
previous example where there are nine tuples belonging to the class 
buys_computer = yes and the remaining five tuples belong to the class 
buys_computer = no. A (root) node N is created for the tuples in D.

 Gini index to compute the Impurity of D:



 To find the splitting criterion for the tuples in D, we need to compute the 
gini index for each attribute. Let’s start with the attribute income and 
consider each of the possible splitting subsets. Consider the subset {low, 
medium}.This would result in 10 tuples in
partition D1 satisfying the condition “income {low, medium}.” The 
remaining four tuples of D would be assigned to partition D2. The Gini 
index value computed based on this partitioning is


